
Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Investigating Xoroshiro128++ PRNG in Procedural

Generation of Minecraft Chunk Structures.

Vincent Rionarlie - 13524031

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: vinctlie06@gmail.com , 13524031@std.stei.itb.ac.id

Abstract—As a world-based adventure and survival-themed

game, Minecraft grants its players the freedom to create and destroy

in any worlds as they will. An important element of said freedom is

the randomized topographical generation of each world, unique to a

certain—almost infinitesimal—degree. The astonishing terrain

generation algorithm in Minecraft involves the implementation of

pseudorandom number generators (PRNGs), which one of them is

Xoroshiro128++. This study is aimed to investigate the correlation

between Xoroshiro128++ and the mathematical concepts of Boolean

algebra and modular arithmetic, as well as computer’s binary

representation. Aside of that, this study also aims to test the

randomness of the said PRNG.

Keywords—Xoroshiro128++, PRNG, Minecraft, Boolean,

Number Theory, Random

I. INTRODUCTION

 The invention of computer technologies, followed by the
internet, has led to the rise of a new, very well-known branch of
entertainment for people to choose amongst, such as video
games. Since its early emergence in the 1990s, there has
currently been around 5 million video games worldwide. One of
which, as of October 2023, has claimed the Guinness World
Record for the “Best-Selling Video Game of All Time” by
having sold over 300 million copies. The game is Minecraft, a
survival-based action-adventure game, developed by Mojang
Studios and now owned by Microsoft.

As a 3D block-based sandbox game, Minecraft offers
indefinite freedom for their players. Players control a blocky
character that are allowed to do anything, including destroying
and crafting anything as they will. Players’ travelling distance
isn’t limited, meaning they could keep going beyond whatever
is viewed ‘too far’. Above all, there are quintillions unique
worlds within the game. All of this is made possible through the
randomization in Minecraft terrain generation process.

Unlike a lot of other games whose assets are crafted
manually, Minecraft uses a process called Procedural Content
Generation (PCG) to construct each world. Within the process,
a number of pseudo-random number generators (PRNGs) are
used to determine how the world’s overall structure—upper
ground terrain, underground caving layouts, building structures,
biome, etc.—is generated. Any kind of PRNG implements
general discrete mathematical concepts ranges from Boolean
algebra to the classic modular arithmetic in number theory. This
paper aims to investigate the implementation of those concepts

in a specific kind of PRNG—Xoroshiro128++, as well as
exploring the overall effects throughout Minecraft world
generation.

II. MINECRAFT

As its name suggests, Minecraft is a game focusing primarily
on the actions of mining/destroying and crafting/building. It
appears as a 3D block-themed adventure game, where every
element throughout the game has the shape of blocks—or at least
constructed from blocky pixels—retaining its distinct blocky
appearance. The game has 5 different game modes, starting with
survival mode as the default, and the rest—hardcore, creative,
adventure, and spectator—serves as additional, but still vital
modes for players to experiment with. Within the game, players
control a character each in a 3D surrounding world, as well as
being given indefinite freedom, as they are allowed to do
anything, including chopping trees, mining ores, crafting tools,
building houses, fighting monsters, travelling the boundless
open world, leaving the rest to the players’ imagination.

Before starting gameplay, players will need to setup their
world, including setting up a pre-existing seed for their world,
or let the game randomize for them. World seed contains a
length of 64 bits or a maximum decimal number of about 18.4
×1018, which is then passed down as parameter in almost all
elements’ procedural generation process. Some of the processes
further modifies the seed to match the required value type
necessary for each process. As mentioned, the seed’s length
indicates the number of 264 or about 18.4 quintillion possible
unique worlds generated.

Fig. 1. Example of World Seed

Minecraft is a block-based game, which means players

destroy and craft things out of blocks. The player themself is

made up of the dimension of 1 block unit lengthwise and

widthwise, and 2 blocks vertically. To ease up calculations,

Minecraft consists of a coordinate system, which the players

can also access. Being a 3D game, the coordinate system

consists of X, Y, and Z axes, with positive value pointing to

east, south, and upward respectively. Coordinate value

measures a block’s lowest northwest corner, i.e. a block’s

mailto:vinctlie06@gmail.com
mailto:13524031@std.stei.itb.ac.id

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

coordinate of (0.0, 1.0, 0.0) refers to its lower northwest corner.

Unlike blocks, which coordinate can only be whole number (or

halved for certain blocks), players coordinate values—

obviously—have big floating points as a consequence of

smooth movement in the game.

Fig. 2. Coordinate System

The vast world of Minecraft itself is made up of millions of

the smallest block grouping units, called chunks. A chunk has

the dimension of 16×16 blocks in X and Z axes. Any two points

in the Y axis belong in the same chunk as long as their X and Z

axes are within the chunk itself. In Minecraft procedural

generation, a world’s raw terrain (surface topology and caving)

is generated per chunk, which works by combining multiple

octaves of Perlin noise—an algorithm which creates smooth

monochromic square image—used to simulate terrain shapes.

Fig. 3. Chunk Borders

III. PROCEDURAL CONTENT GENERATION

In animation and game development, a lot of assets are
required, including base terrain, environmental decorations,
building structures, and other theme-specific elements. Content
and asset generation can be done manually, where designers
sketch and render the assets by hand. This method is a common
practice for small to medium scale productions within
animation and game development, with the primary reason
being the scale and size efficiency, while also preserving the
core ideas of the designer. The manual method is no longer
relevant as the scale grows larger, except for some major
production studios.

For large scale productions, especially in open-world
settings, it is arguably more efficient for studios to use an
automated generation method, with the cost of losing
authenticity over the contents. This is where procedural content
generation (PCG) plays a critical role.

In PCG, instead of manually crafting generation ideas out
of nothing, designers code an algorithm to automate the assets
generation. Once executed, the code will create a pseudo-

random structure, whose constraints are determined by the
designers themselves. In animation developments, procedural
generation is often used to create proper assets after assets to
use. In game creations, the method is used more directly. Game
developers utilize PCG to create assets during or before
runtime, whose players can interact with in real time.

In practice, PCG often uses pseudo-random number

generators (PRNGs) to create unpredictability during assets

creation. The pseudo-random number—or commonly called

seed—is later passed on as a parameter for generation functions,

i.e. graph grammar-based function for dungeon-based games,

noise functions and L-system for 3D infinite world game, etc.

Fig. 4. (a) Example of Perlin Noise, (b) Generated Terrain [6]

IV. BOOLEAN ALGEBRA

A. General Definition

Boolean algebra is a branch of both discrete mathematics that
explores the calculations of Boolean values—variable whose
values varies within a set of two elements, such as 0 for false,
and 1 for true. The theory was first proposed and created by
George Boole in his book “The Mathematical Analysis of
Logic”, published in 1847. It was further refined in his latter
book “The Laws of Thought” where he proposed the basic
principles of logic. The principles are then formulated under the
work of Marshall Stone and Alfred Tarski in 1930s into the new
mathematical discipline: Boolean algebra.

B. Boolean Algebra Laws

Boolean algebra is defined as a Boolean ring consisting of
the universe U—a set of integers, three operators for the
universe, such as two binary operators of addition and
multiplication (+ and ∙), and a unary complement operator (‘), as
well as the integers 0 and 1. A Boolean ring follows a set of laws
in Table. 1

Table. 1. Boolean Algebra Laws

Identity Law

(1) 𝑎 + 0 = 𝑎,

(2) 𝑎 ∙ 1 = a,

Involution Law

(13) (𝑎′)′ = 𝑎

Commutative Law

(3) 𝑎 + 𝑏 = 𝑏 + 𝑎,

(4) 𝑎 ∙ 𝑏 = 𝑏 ∙ 𝑎,

Absorption Law

(14) 𝑎 + (𝑎𝑏) = 𝑎,

(15) 𝑎(𝑎 + 𝑏) = 𝑎,

Distributive Law

(5) 𝑎 ∙ (𝑏 + 𝑐) = (𝑎 ∙ 𝑏) +
(𝑎 ∙ 𝑐),

(6) 𝑎 + (𝑏 ∙ 𝑐) = (𝑎 + 𝑏) ∙
(𝑎 ∙ 𝑐),

Associative Law

(16) 𝑎 + (𝑏 + 𝑐) =
 (𝑎 + 𝑏) + 𝑐,

(17) 𝑎 ∙ (𝑏𝑐) = (𝑎𝑏) ∙ 𝑐,

Idempotent Law

(7) 𝑎 + 𝑎 = 𝑎,

De Morgan’s Law

(18) (𝑎 + 𝑏)′ = 𝑎′𝑏′

https://www.researchgate.net/publication/274384740_Biological_Content_Generation_Evolving_Game_Terrains_Through_Living_Organisms/figures?lo=1

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

(8) 𝑎 ∙ 𝑎 = 𝑎, (19) (𝑎𝑏)′ = 𝑎′ + 𝑏′,

Complement Law

(9) 𝑎 + 𝑎′ = 1,

(10) 𝑎 ∙ 𝑎′ = 0,

De Morgan’s Law

(20) 0′ = 1

(21) 1′ = 0

Dominant Law

(11) 𝑎 ∙ 0 = 0,

(12) 𝑎 + 1 = 1,

The laws share similarities with the laws underlying the set
theory. As such, they are structurally equivalent to each other.
For instance, addition and multiplication operator in Boolean
algebra represents the union and intersection operator in set
theory respectively.

C. Boolean Function

 In order to obtain more varying calculation outputs, there

exists Boolean function whose arguments and the function itself

hold a value each within the two-element set of {0,1}. More

formally, let us denote B = {0,1}. Bn consists of all sets of its

member sequences from set B (binary vectors) to the length of

n, so that:

 𝐵𝑛 = { (𝑏1, 𝑏2, … , 𝑏𝑛) | 𝑏𝑖 ∈ 𝐵 } (1)

 For any Boolean function f of n variables, it is defined as a

mapping of Bn such that:

 𝑓: 𝐵𝑛 → 𝐵 (2)

Provided a binary vector b = (b1,b2,…,bn), b is called a true point

if f(b) = 1 and a false point if f(b) = 0. A Boolean function f is

made up of some terms—product of literals. A literal is any

Boolean variable bi as well as its complement. A function’s

degree is the amount of its literal. Following this definition, a

Boolean function can take canonical form in Minterm (3)—or

Sum of Products (SOP), where the function minimizes the

number of terms by adding all possible products of literals—

and Maxterm (4)—or Product of Sums (POS) as opposed to

Minterm, by multiplying all possible sum of literals. For

example:

 𝑓(𝑥, 𝑦) = 𝑥𝑦′ + 𝑥′𝑦 (3)

 𝑓(𝑥, 𝑦) = (𝑥 + 𝑦′)(𝑥′ + 𝑦) (4)

D. Logic Gates

By applying Boolean functions, we can obtain the

implementation of logic gates by combining different sets of

terms of the second degree, as proved by Shannon in 1938.

Logic gate is defined as a digital gate that allows data to travel

through, where data is defined as a stream of true / 1 value. By

writing down all possible combinations of function return value

for two Boolean variables, we get to see some very commonly

used logic gates that are used widely in the field of electrical

and computer engineering. Consider two variables A and B, as

well as functions F0…Fn-1, where n = 222
= 16, we will get all

of the possible combinations of truth tables for A and B.

Table. 2. Truth Table Combinations

A B F0 F1 F2 F3 F4 F5 F6 F7

0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 1 1 1 1

1 0 0 0 1 1 0 0 1 1

1 1 0 1 0 1 0 1 0 1

A B F8 F9 F10 F11 F12 F13 F14 F15

0 0 1 1 1 1 1 1 1 1

0 1 0 0 0 0 1 1 1 1

1 0 0 0 1 1 0 0 1 1

1 1 0 1 0 1 0 1 0 1

 Some of the functions return consistent values to the

commonly used logic operators. The list can be seen below.

Table. 3. Common Logic Gates List

Index Symbol Name

Index Symbol Name

F0 0 FALSE F9 A⊙B XNOR

F1 A∙B AND F10 B’ NOT (B)

F6 A⊕B XOR F12 A’ NOT (A)

F7 A+B OR F14 (A∙B)’ NAND

F8 (A+B)’ NOR F15 1 TRUE

V. MODULAR ARITHMETICS

A. General Definition

In mathematics, the discipline that studies numbers is called

the Number Theory. It explains how numbers interact with each

other, as well as the properties specific numbers have. It also,

certainly, explores the division properties of numbers, which

then gave rise to Modular Arithmetic. It is another branch of

discrete mathematical field that studies specifically the division

and remainder properties of integers.

B. Division and Remainder Rules

For any 𝑎, 𝑏, 𝑐 ∈ ℤ where 𝑎 ≠ 0, then 𝑎 | 𝑏 ← 𝑏 = 𝑎𝑐,

which reads a divides b if there exists an integer c such that b =

ac. The definition is then extended with the Euclidean Division

Lemma, that states for any 𝑎, 𝑏 ∈ ℤ where 𝑏 > 0, then 𝑎 =
𝑏𝑞 + 𝑟 for any 𝑞, 𝑟 ∈ ℤ and 0 ≤ 𝑟 < 𝑛.

Another important concept is the Greatest Common Divisor

(GCD). GCD of two numbers is equal to the largest positive

integer that divides both of them. By notation:

 𝐺𝐶𝐷(𝑎, 𝑏) = 𝑐 ← { 𝑐 ∈ ℕ , (𝑐|𝑎) , (𝑐|𝑏) } (1)

 0 < 𝑐 ≤ max (𝑎, 𝑏) (2)

The search for an integer c is not intuitive for arbitrarily large a

and b. One can implement the Euclidean Algorithm to find the

GCD of large a and b. Consider 𝑎 ≥ 𝑏 and 𝑟0 = 𝑎 and 𝑟1 = 𝑏 :

 𝑟0 = 𝑟1𝑞1 + 𝑟2 , 0 ≤ 𝑟2 < 𝑟1 (3)

 𝑟1 = 𝑟2𝑞2 + 𝑟3 , 0 ≤ 𝑟3 < 𝑟2 (4)

 ⋮
 𝑟𝑛−1 = 𝑟𝑛𝑞𝑛 + 0 (5)

 𝐺𝐶𝐷(𝑎, 𝑏) = 𝐺𝐶𝐷(𝑟0, 𝑟1) =
 𝐺𝐶𝐷(𝑟1, 𝑟2) = 𝐺𝐶𝐷(𝑟𝑛 , 0) = 𝑟𝑛 = 𝑐 (6)

C. Modulo Operation

Modulo operation outputs a division remainder between two

integers. This concept is strongly tied to the division rules, as it

is defined based on them. For any 𝑎, 𝑚, 𝑟 ∈ ℤ, 𝑎 𝑚𝑜𝑑 𝑚 = 𝑟 ↔

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

𝑎 = 𝑚𝑞 + 𝑟 where 0 ≤ 𝑟 < 𝑚. The set of all possible values of

r is defined as {0,1, … , 𝑚}.

Consequently, there are infinite possibilities of value a that

shares the same result when it is done the modulo operations

with m. Therefore, a congruence (≡) is used to indicate a

similarity in modulo result between two values a and b, such

that 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑚, where it requires 𝑚 | (𝑎 − 𝑏).

VI. BINARY LOGIC

A. Binary Number Representation

Computer machines represent and scan information in a

base-2 numbering system, often called binary notation. Unlike

our daily base-10 or decimal notation, binary notation

represents numbers with only two digits: 0 and 1. It resets to

zero every 2 numbers, for example 110 becomes 12 , 210 becomes

102 , 310 becomes 112, and 410 becomes 1002. The leftmost digit

of the binary number is assigned the index of 0, with each

following digits to the right having an index incremented by

one. Each digit in a binary number is called a bit. A conversion

from binary system to decimal system can be done by

calculating the sum of each binary digit multiplied by 2 to the

power of the digit’s index. For instance, 101002 = 0∙20 + 0∙21 +

1∙22 + 0∙23 + 1∙24 = 2010. Oppositely, a conversion of decimal

number to binary number is done by repeatedly: dividing a

decimal number by two, leaving the floor result for next

division, and writing down the remainder with the first division

remainder being the leftmost digit of the binary number. As an

example of 1010, 10÷2 = 5+0 → 5÷2 = 2+1 → 2÷2 = 1+0 →

1÷2 = 0+1, which results to 10102.

B. Primitive Data Types

One of the basic implementations of binary notation in

computer machine is within the primitive data types present in

programming languages. First of all, binary numbers are

generally stored in bits or a collection of 8 bits, called a byte.

Every primitive data type is assigned its own size.

Table. 4. Primitive Data Types in Java Language

Name Size (bits) Value Stored

Boolean 1 True/False (0 or 1)

Byte 8 Byte (-128 to 127)

Char 16
Character representation in ASCII

(0 to 255)

Short 16 Integer (-31,768 to 31,767)

Int 32
Integer

(-2,147,483,648 to 2,147,483,647)

Long 64
Integer

(-263 to 263-1)

Float 32
Real Number

(up to 7 decimal points)

Double 64
Real Number

(up to 16 decimal points)

For integer type primitives, negative values are obtained

with the implementation of two’s-complement method. In this

method, the rightmost bit is regarded as a sign bit, where 0

indicates positive and 1 indicates negative. The method regards

the sign bit as -2n-1 instead of 2n-1, which, when it gets multiplied

by 1, will result in the smallest negative number possible for the

data type. The addition of 1 to any other bits consistently

signifies positive addition to both positive and negative number.

C. Bitwise Operator

 Similar to decimal numbers, binary numbers can be
calculated with basic operations, including addition, subtraction,
multiplication, division, and even modulo. These operators work
just like decimal operators, just a bit more unintuitive. For
example:
 100102 101012 102

 101002 + 10012 - 112 ×
 1001102 11002 10
 10⋮
 1102

Division and modulo operator work similarly as well, but will
not be displayed due to simplicity.
 Aside from the basic operators, there are some other crucial
binary operators in computer organization, called the bitwise
operators. They share a similarity with the logic gate operators
showed in Table. 3 The key difference is that the operators
check every bit of both of the binary values given at the same
time, as opposed to Boolean operators that only check two bits
values. Some bitwise operators are shown below.

Table. 5. Bitwise Operators in C Language

Operators Name Usage Description

& Bitwise AND a & b
AND operator on every a and b’s
bits with the same indices

| Bitwise OR a | b
OR operator on every a and b’s
bits with the same indices

^ Bitwise XOR a ^ b
XOR operator on every a and b’s
bits with the same indices

~ Bitwise NOT ~a Negates every bit of a

<< Left Shift a << b
Shift every a’s bit to the left by b
times and fill the rightmost with
0s

>> Right Shift a >> b
Shift every a’s bit to the right by
b times, and fill the leftmost with
data type’s preference

VII. INVESTIGATION STRATEGY

A. Minecraft Commercial Usage License

Minecraft is a close-source software. It’s stated in the

Microsoft Service Agreement section 8b point (ii) under

Software License, that, user does not have the license to

“disassemble, decompile, decrypt, hack, emulate, exploit, or

reverse engineer any software or other aspect of the Services

that is included in or accessible through the Services, except and

only to the extent that the applicable copyright law expressly

permits doing so”. The paper’s author fully respects the rule.

For research purpose, the author utilized a framework that

allows for Minecraft modification legally. As such, the author

examined the local game source code to gain better

understanding on how the specific PRNG—Xoroshiro128++—

works. The author will not redistribute any important assets of

the game, including the source code. Hence, to provide an

informative overview of the algorithm, the author will only

uncover the main logic of the algorithm, as well as creating a

custom script to illustrate how the algorithm functions.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

B. Custom Code Construction

After inspecting the general overview of Minecraft’s source

code, the author implements a Xoroshiro128++ custom

program in Java language. To reduce resemblance with

Minecraft’s source code, the author constructs the code by

investigating the original Xoroshiro128++ work done by David

Blackman and Sebastiano Vigna [13].

C. Randomness Test

A good RNG is distinguished by its low chance to produce

a repeated sequence of numbers. To test whether

Xoroshiro128++ is a good pseudo-RNG, the author utilized the

tool made by the US National Institute of Standards and

Technology (NIST), namely Nist Test Suite SP 800-22. It

consists of 15 different tests, which each produces a certain

probability value. The author will only focus on the probability

values and calculate its overall value to determine if it is

considered a good PRNG.

VIII. XOROSHIRO128++ IMPLEMENTATION

A. Mathematical and Computational Concepts

Xoroshiro128++ acts as a PRNG that applies linear

transformation to update two groups of words of a larger state

array. It is done to obtain a good parallelizability inside large

scale CPUs. It works by combining a XOR, rotation, shift, and

again a rotation—hence its name—onto a word of 64 bits (a

randomized or preset seed).

In the program’s implementation, Xoroshiro128++ relies

heavily on the three main operators above. At first, a

Xoroshiro128++ function is passed two arguments of long data

type seeds, namely low seed and high seed. At initialization, the

function is given an arbitrary value that’ll determine the seeds

number. The value was then calculated with the three main

operators to achieve the result wanted. The calculation consists

of left rotation, which operates a left shift and wraps the

leftmost shifted values to the rightmost bits. Other than that,

the calculation combines a set of bitwise XOR function between

the low and high seed, as well as left shifts that is equivalent

with multiplying by 2n for every 𝑥 ≪ 𝑛. The values passed into

the operators functions are of precise choices that preserves the

distribution and randomness of the PRNG.

B. Sample Algorithm

Firstly, the author defined a class Xoroshiro128 with two

long type attributes, seedLo and seedHi, each representing low

seed and high seed respectively.

Fig. 5. Xoroshiro128++ Class

When initialized as a new class, Xoroshiro128 will undergo a

function that sets its initial values to pseudorandom values-

alike, which is further calculated based on computer’s system

elapsed runtime—at the moment it is called—in nanoseconds,

as well as the significant bits of a UUID (Universally Unique

Identifier) —an identifier whose value created through the

process of another PRNG, usually used for file naming and

session tokens. It also implements the randomness of the golden

ratio binary value in the data type long, in rare cases where the

variables seedLo and seedHi are both 0s.

Fig. 6. Xoroshiro128++ Class Initialization

The core of Xoroshiro128++ comes from its next function,

where it generates the pseudo-random number used for other

utilities, including Minecraft random chunk generator. It first

calculates result as the function return value, which is done

through a combination of binary rotation and addition

operators. Following that, the function further modifies the

class’s own value. It’s done through sets of XOR, rotation, and

left shift operators.

Fig. 7. Xoroshiro128++ Randomizer Function

For testing purpose, a main function is made inside the class

OutputPi to implements the Xoroshiro128 class and functions.

The main function prints out 125,000 values generated by

Xoroshiro128’s next function as binary strings of 64 bits each.

It is then written into a file named nist_output.pi.

Fig. 8. Main Output Function

C. NIST Test Suite

The implemented Xoroshiro128 code wrote binary strings

into the file nist_output.pi. This file doesn’t necessarily need to

https://vigna.di.unimi.it/ftp/papers/ScrambledLinear.pdf

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

be under the file extension of .pi, but doing so provides

convenience as it’s most compatible with the NIST Test Suite

used. The Xoroshiro128 program generated a sequence of

binary strings with the length of 64 each multiplied by 125,000,

which results in a sequence of length 8,000,000. The sequence

is then divided into bitstream segments of length 100,000 to be

tested. It indicates that the test is conducted 80 times.

The test generates a value called P-value, which is defined

as the probability (0-1) that a perfect RNG would have

produced a sequence less random than the RNG/PRNG being

tested. Thus, a P-value of 1 indicates that the RNG tested would

100% produce a perfect random sequence. The tool provides 15

different tests, with different parameters that contribute to each

test P-value.

• Frequency (Monobit) Test

• Frequency Test within a Block

• The Runs Test

• Tests for the Longest-Run-of-Ones in a Block

• The Binary Matrix Rank Test

• The Discrete Fourier Transform (Spectral) Test

• The Non-overlapping Template Matching Test

• The Overlapping Template Matching Test

• Maurer’s “Universal Statistical” Test

• The Serial Test

• The Approximate Entropy Test

• The Cumulative Sums (Cusums) Test

• The Random Excursions Test

• The Random Excursions Variant Test

Out of all 15 different tests, author chose to focus on

monobit frequency test, frequency test within block, and

approximate entropy test, but not limited to them. The former

test focuses on the proportion of 0s and 1s among the test

subject, which is assessed as the closeness to 50% 0s and 50%

1s as expected from a truly random number and converted into

P-value. Frequency within a block test aims to detect localized

deviations from the ideal 50% frequency of 1s. It is done by

decomposing the test sequence into a number of

nonoverlapping subsequences, and then applying a chi square

test. Finally, the latter entropy test focuses on the frequency of

all possible overlapping blocks of two consecutive/adjacent

lengths (m and m+1) against the expected result for a random

sequence, which is also then converted into P-value. For

reference, only two samples of each test will be displayed.

Fig. 9. Frequency Test Sample Results

Fig. 10. Block Frequency Test Sample Results

Fig. 11. Approximate Entropy Test Sample Results

The samples are naturally not representative, as the data size

is truly large (8 million bits). Even so, these data provide a

better insight for how the values are calculated. To get a better

visualization of the test, let us look at the average p-values for

the three tests.

Fig. 12. Main Tests Average p-values

The data shows a lower end value to the test sequence. It is not

to worry, since a sequence with p-value above the default a

value (0.01 or 1%) is acceptable as a random number with

99.9% confidence. A simple test to set each sequence to 1

immediately obtains the value of 0.000000 for every tests.

Fig. 13. False Output Result

As further analysis, the average p-value for all of the 15 tests

is calculated.

 𝑝𝑎𝑣𝑔 = 7.3529029 ÷ 15 ≈ 0.49019352 (1)

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

As the average p-value is 490% larger than a value of 0.01, the

Xoroshiro128++ proofs to be a good PRNG. A value at just

about 50% fits the pseudorandom number nature itself.

D. Minecraft Implementation

In Minecraft, Xoroshiro128++ is used mainly in the

generation of random seed in case players have not set one, as

well as chunk generators. The implementation of a PRNG is

needed to create a natural-occurring terrain and structures. The

values returned by PRNG determines a lot of terrain generation

aspects. One of the major generations being the environments

decorator generation, where trees, grass, and other biome-

specific elements are formed. Aside from that, the usage of

Xoroshiro128++ is also apparent if the player hasn’t set any

seeds before creating the world. The game will attempt almost

immediately to create a random Xoroshiro128++ seed by also

utilizing player’s system’s elapsed time.

IX. CONCLUSION

 By this research, it can be concluded that Xoroshiro128++

algorithm serves as a very important element of Minecraft’s

world generation. With the help of the algorithm created by

Blackman and Vigna, the game is able to produce such a

sophisticated, yet still natural structural design. The

implementation of mathematical concepts—Boolean algebra,

modular arithmetic, and a little bit of linear algebra, as well as

the computational concept of bitwise operations, contributes to

the making of such a precisely crafted algorithm. Through

further experiments done in this paper, it was also deduced with

the help of the tool NIST Test Suite SP800-22, that

Xoroshiro128++ algorithm was considered a good

pseudorandom number generator (PRNG) by looking at its

average p-value which lies at the value 0.49019, significantly

higher than a value of 0.01. For future references, the research

into the detailed mechanism of Xoroshiro128++ needs to be

deepened with further understandings of linear algebra.

X. APPENDIX

- Source Code:

https://github.com/Vixrlie/DiscreteMath.git

- Video Youtube: https://youtu.be/-IGOnYkYsMI

XI. ACKNOWLEDGEMENT

The author wants to express their deepest gratitude towards

Mr. Rinaldi Munir as their lecturer in Discrete Mathematics

Class-01. It has been a very insightful experience to be a

student of his, for they have learned a lot of knowledge in a

very structured curriculum. It was also through the help of his

open-sourced discrete mathematic resources that they have

been able to easily navigate between materials for study and

research purposes. The author would also thank him for this

paperwork assignment through the opportunity for them to

explore such a bizarre topic to write as their assignment.

REFERENCES

[1] Guinness World Records, “Best‑selling videogame”. Accessed: June 14,
2025. [Online]. Available:

https://www.guinnessworldrecords.com/world-records/best-selling-
video-game

[2] T. X. Short and T. Adams, Procedural Generation in Game Design,
1st ed., Boca Raton, FL: CRC Press, 2017. Accessed: June 14, 2025.
[Online]. Available:
https://books.google.co.id/books?id=Rj4PEAAAQBAJ

[3] Rune Skovbo Johansen, “Procedural world potentials: The simulation,
functional and planning approaches,” blog.runevision.com, 2015.
Accessed: Jun. 16, 2025. [Online]. Available:
https://blog.runevision.com/2015/08/procedural-world-potentials-
simulation.html.

[4] R. Munir, “IF2120 Matematika Diskrit,” Aljabar Boolean, Bandung
Institute of Technology, 2024. Accessed: Jun. 18, 2025. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/matdis.htm

[5] R. Munir, “IF2120 Matematika Diskrit,” Teori Bilangan, Bandung
Institute of Technology, 2024. Accessed: Jun. 18, 2025. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/matdis.htm

[6] W. Eck and M. Lamers, “Biological content generation: Evolving game
terrains through living organisms,” in Lecture Notes in Computer Science,
vol. 9027, C. Martinho, A. El Rhalibi, M. Yannakakis, and J. Baalsrud
Hauge, Eds. Cham, Switzerland: Springer, 2015, pp. 335–344. doi:
10.1007/978-3-319-16498-4_20. Accessed: Jun.18,2025.

[7] Stanford Encyclopedia of Philosophy, “The Mathematics of Boolean
Algebra,” first published Jul. 5, 2002; substantive revision Jul. 11, 2018.
[Online]. Accessed: Jun. 19, 2025. Available:
https://plato.stanford.edu/entries/boolalg-math/.

[8] S. Givant and P. R. Halmos, Introduction to Boolean Algebras,
Undergraduate Texts in Mathematics. New York, NY: Springer
Science+Business Media, 2008. Accessed: Jun. 19, 2025 [Online].
Available: https://books.google.co.id/books?id=ORILyf8sF2sC

[9] Microsoft Corporation, “Section 8: Software License,” Microsoft Services
Agreement. Accessed: Jun. 19, 2025. [Online]. Available:
https://www.microsoft.com/en-
id/servicesagreement#8_softwareLicense.

[10] Wolfram Research, “Boolean Function,” MathWorld–A Wolfram Web
Resource. Accessed: Jun. 20, 2025. [Online]. Available:
https://mathworld.wolfram.com/BooleanFunction.html.

[11] National Institute of Standards and Technology (NIST), A Statistical Test
Suite for Random and Pseudorandom Number Generators for
Cryptographic Applications, Special Publication 800-22, Rev. 1a,
Apr. 2010. Accessed: Jun. 20, 2025. [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-
22r1a.pdf

[12] R. E. Bryant and D. R. O’Hallaron, Computer Systems: A Programmer’s
Perspective, 3rd ed. Boston: Pearson, 2015. Accessed: Jun. 20, 2025.
[Online]. Available:
https://www.cs.sfu.ca/~ashriram/Courses/CS295/assets/books/CSAPP_2
016.pdf

[13] D. Blackman and S. Vigna, “Scrambled Linear Pseudorandom Number
Generators,” arXiv:1805.01407 [cs.DS], 2018. Accessed: Jun. 20, 2025.
[Online]. Available:
https://vigna.di.unimi.it/ftp/papers/ScrambledLinear.pdf

DECLARATION

Hereby, I declare that the paper is a work of mine, and not a

copy nor translation nor plagiarism of others’ work.

Bandung, 20 Juni 2025

Vincent Rionarlie / 13524031

https://github.com/Vixrlie/DiscreteMath.git
https://youtu.be/-IGOnYkYsMI
https://www.guinnessworldrecords.com/world-records/best-selling-video-game
https://www.guinnessworldrecords.com/world-records/best-selling-video-game
https://books.google.co.id/books?id=Rj4PEAAAQBAJ
https://blog.runevision.com/2015/08/procedural-world-potentials-simulation.html
https://blog.runevision.com/2015/08/procedural-world-potentials-simulation.html
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/matdis.htm
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/matdis.htm
https://plato.stanford.edu/entries/boolalg-math/
https://books.google.co.id/books?id=ORILyf8sF2sC
https://www.microsoft.com/en-id/servicesagreement#8_softwareLicense
https://www.microsoft.com/en-id/servicesagreement#8_softwareLicense
https://mathworld.wolfram.com/BooleanFunction.html
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf
https://www.cs.sfu.ca/~ashriram/Courses/CS295/assets/books/CSAPP_2016.pdf
https://www.cs.sfu.ca/~ashriram/Courses/CS295/assets/books/CSAPP_2016.pdf
https://vigna.di.unimi.it/ftp/papers/ScrambledLinear.pdf

